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FOREWORD 
 

This interim report, prepared by the Boeing Phantom Works organization, is provided under the 
Structural Technology and Analysis Program (STAP), Advanced High Temperature Structural Seals 
(Delivery Order No. 0012) contract.  The reporting period is 6 May 1999 to 5 November 1999.  The 
U.S. Air Force funding is under Contract No. F33615-95-D-3203.  The Program Technical Monitors 
are Harold Croop from Air Force Flight Dynamics Laboratory and Dr. Bruce Steinetz from NASA 
Glenn Research Center.  Funding for this program originated with NASA under the Bantam launch 
vehicle program. 
 
The Boeing Task Leader is: 

Dr. Charles W. Newquist 
425-234-2662 
chuck.newquist@boeing.com 

  
Other Boeing contributors included: 

 
Juris Verzemnieks  -  Seal design and materials specification 
425-234-2682 
juris.verzemnieks@boeing.com 
 
Peter C. Keller  -  Aerothermal analysis 
206-662-1805 
peter.c.keller@boeing.com 
 
Mark W. Shorey  -  Test hardware design and fabrication 
425-477-5871 
mark.w.shorey@boeing.com 
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ADVANCED HIGH TEMPERATURE STRUCTURAL SEALS 
 

Charles W. Newquist, Juris Verzemnieks, Peter C. Keller, and Mark W. Shorey 
The Boeing Company 

Phantom Works 
Seattle, Washington 98124-2499 

 
 

SUMMARY 
 
This program addresses the development of high temperature structural seals for control surfaces for 
a new generation of small reusable launch vehicles.  Successful development will contribute 
significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads.  
Development of high temperature seals is mission enabling.  For instance, ineffective control surface 
seals can result in high temperature (3100° F) flows in the elevon area exceeding structural material 
limits.  Longer sealing life will allow use for many missions before replacement, contributing to the 
reduction of hardware, operation and launch costs. 
 
During the first phase of this program the existing launch vehicle control surface sealing concepts 
were reviewed, the aerothermal environment for a high temperature seal design was analyzed and a 
mock up of an arc-jet test fixture for evaluating seal concepts was fabricated. 

 
INTRODUCTION 
 
This effort provides for the analysis, design, fabrication and testing of advanced structural seal 
concepts, with emphasis on developing and validating seal concepts incorporating current state of the 
art materials, not developing new materials.  Key to the success of this program will be use of 
emergent materials in combinations that will result in durable, feasible, and affordable seal designs.  
At the completion of the program, a matrix of materials and material combinations will have been 
developed for a range of aerothermal environments for a wide variety of advanced control 
surface/thermal protection systems and advanced structures.  Test article types will include sub-
element seals and validation seals.  Testing will include thermal and mechanical loading and arc-jet 
exposures.  Aerothermal/structural analysis methods applied early in the program to design the seals 
will be validated by comparing the predicted and measured seal thermal/structural responses of the 
validation seals in arc-jet tests. 
 
PROGRAM PLAN 
 
This program consists of a multi-year technical effort, and this interim report covers the first six 
months of the program. Future reports will cover progress made in subsequent reporting periods. 
The five principal technical tasks in the program include: 
(1) Determine seal requirements 
(2) Select candidate seal concepts/materials 
(3) Perform thermal/structural analyses 
(4) Test seal concepts under representative conditions using NASA-ARC arc-jet heating facility 
(5) Provide seal designs/databases to vehicle programs for successful implementation and flight. 



NASA/CR—2000-210522  2  

 
RESULTS AND DISCUSSION 
 
The requirements for control surface seals for small reusable launch vehicles were established 
through technical interchange meetings at NASA-JSC (X-38 program), NASA-ARC (Thermal 
Protection Branch), NASA-KSC (Orbiter experience), Boeing Seal Beach (X-38 program), and 
Hi-Temp (seal and TPS fabricator).  Aerothermal analysis of the seal area has identified the 
temperature range of the control surface seal area. 
 
 
Lessons Learned from Orbiter Experience and New Program Plans 
 
The primary difference between the seals for new smaller vehicles and those used on the Orbiter 
relates to the size and thickness of the wing and control surfaces.  The thickness of the Orbiter 
wing allows the control surface seals to be buried away from the wing-elevon gap, permitting the 
ultimate pressure seal to be achieved at a relatively low temperature by a flexible polymer rub 
strip.  The new smaller vehicles will have significantly reduced wing depth, eliminating the 
thermal drop from the elevon gap to the seal, which is used effectively in the Orbiter.  The result 
is much higher temperatures at the sliding seals, requiring ceramic materials for survivability. A 
typical double-bulb seal type of construction is shown in figure 1. 
 
 

 
 

Figure 1   High Temperature Bulb Seal – Wrapped with Ceramic Fabric 
 
 
Compressible ceramic fiber bulb seals are used in static gap areas on the exterior of the Orbiter, 
but not in areas exposed to extensive sliding or reciprocating motion.  These seals are made from 
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Nextel 312 outer fabric over an Inconel woven spring and ceramic insulation, and have a 
reusable temperature limit of 1600°F.  Similar semi-static seals designed for the X-33 use 
Nextel 440 fabric with stiffer knitted Inconel springs and have an upper use temperature of 
about 2000°F.  Spring-loaded silicide-coated niobium seals are used at the ends of Orbiter 
control surfaces, but due to cost, weight and rigidity are not suitable for use on spanwise seals. 
 
Dellacorte and Steinetz1 published data on testing all-ceramic braided rope seals, but very little 
data exists on sliding wear behavior of ceramic fiber covered bulb seals.  Anecdotal evidence 
indicates that harness satin weaves provide better sliding wear than plain weave -- providing that 
sliding direction is parallel to face fibers, although current seal fabricators may not differentiate 
between warp and fill faces when wrapping fabric. 
 
The specific face of the fabric is the surface of the fabric that exposes the floating yarns of the 
particular fabric direction (denoted by warp or fill). Figure 2 depicts how the difference in 
direction may be significant in sliding contact behavior of harness satin weaves. Harness weave 
fabrics are considered to be better in sliding contact (in the warp direction against the warp face) 
than other weave types. Sliding contact in a direction 90 degrees to the floating yarns is expected 
to cause significantly more damage. In figure 2 the most damage prone direction is the fill 
direction (B) with sliding contact against the warp face. 
 
 
 

 
 

Figure 2   Direction of Sliding Contact Relative to Fabric Orientation 

                                                           
1 Dellacorte, C. and Steinetz, B.M., “Relative Sliding Durability of Candidate High Temperature Fiber Seal 
Materials,” NASA Technical Memorandum 105806, August, 1992, Lewis Research Center, Cleveland, Ohio 
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Candidate Seal Concepts and Materials 
 
As our baseline seal candidate we are focusing on a bulb seal as shown in figure 1. This design – 
whether with one or two “bulbs” – has a wealth of experience on the Shuttle and on other 
emerging programs such as X-33. Our material choices for initial concepts will be:  
 

Nextel 440 for the ceramic fabric wrap. 
Nextel 440 for the braid over the metal spring and the fiber fill. 
Inconel, multi-wire, metal alloy spring 
Saffil fiber for the fill material 

 
Design issues with this concept are permeability, abrasion resistance after thermal exposure, 
resiliency after thermal exposure, and shape retention after thermal exposure. These issues will 
be explored under the second phase of this project. Approaches for decreased permeability and 
resiliency may be, respectively, additional ceramic or metallic elements within the “bulb,” and 
inorganic replacements for the spring element. What may ultimately be required is a ceramic 
construction for the spring element. This new element would probably be a fine gage ceramic-
matrix-composite “spring.” It would allow the seal to retain its shape and resiliency after thermal 
exposure to temperatures of 2400°F. 
 
 
Aerothermal Analysis 
 
An aerothermal analysis was performed using an X-38 environment, and a 2-D body-to-flap 
control surface seal arrangement that was based on one of the X-38 candidate designs. This 
vehicle and its parameters were selected because they were representative of the types of designs 
for the new generation, smaller vehicles. The analysis included computed fluid dynamics (CFD) 
analysis using FLUENT software for 2-D analysis of gas temperatures, pressures, and flow 
vectors. 
 
Two seal arrangements were analyzed: one with an impermeable seal where no fluid 
transmission was allowed; and the other with a permeable seal that used a value for permeability 
comparable to 3-D woven forms used for resin transfer molding analyses. Some degree of 
permeability will need to be considered for high temperature seals based on ceramic fiber 
technologies. However, in retrospect the permeability that we selected is probably on the high 
side, resulting in temperatures for the permeable seal case that are higher than what could be 
expected. During Phase II the permeability issues will be examined analytically and by 
experiment. 
 
Figures 3 and 4 summarize the aerothermal  analysis and its assumptions. 
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• 2-D Navier-Stokes analysis using commercial CFD code FLUENT 
• Limited computational domain for faster turn-around 
• Evaluate effect of seal permeability 
• Use CFD results at key trajectory points to scale simpler methods for entire 

trajectory 
• Apply predicted environments to structural thermal analysis to determine 

seal temperatures 
 
Figure 3   Aerothermal Analysis -- Method Description 

 
 
 
 

 
 

• Boundary layer growth upstream of domain neglected 
• Steady 2-D flow 
• Turbulent boundary layer 
• 20 degree bodyflap deflection angle 
• Radiation equilibrium surface condition (e=0.8, F = 0.144) 
• Rectangular shaped seal (to simplify computational grid) 
• Porous seal has 10-7 ft2 permeability 

 
Figure 4   Current Assumptions for Aerothermal Analysis 

 
 
Figure 5 is a representation of the X-38 vehicle, the location of the body to flap region along with 
the static pressure contour map for a 20-degree flap angle (with an impermeable seal). This plot 
is used for illustration purposes because static pressure correlates better than other CFD outputs 
with the heat transfer and ultimately with the temperatures of the structural components. 

 
 
 
 



NASA/CR—2000-210522  6  

Flow

Pressure (psf)

High pressure at
re-attachment point

Seal

Body
Flap

 
 

Figure 5   Static Pressure Distribution in Body Flap Gap and Seal Area 
 
 
Details of the aerothermal analyses are shown graphically in figures 6 through 11 and a brief 
description follows for each of the figures.  
 
Figure 6 shows the grid used for the localized area of the 2-D representation of the flap-to-body 
area, including the seal. 
 
Figure 7 shows the flow pathlines for both cases of seal permeability. The extreme degree of 
permeability for the porous seal does not appreciably affect the flow structure. 
 
Figure 8 of the static pressure distribution indicates that there is not a significant pressure 
difference at the seal area for the two seal cases. 
 
Figure 9 shows the total temperature distribution in degrees R in the gap and seal region. It 
should be noted that the total temperature is for the fluid only. The distributions indicate that  
hot gas will be forced further into the gap; and some amount of hot gas will flow through the 
permeable seal. Estimates for the heat transfer from the hot gas environment were made based  
on radiation equilibrium at the surface (an idealized surface assuming emissivity = 0.8; no flow 
through surfaces; no conduction into structure). Results for these calculations are presented in 
figure 10 in degrees F and indicate that the seal temperatures are higher, as expected, for the 
permeable seal. The permeable seal temperatures are in the range of 2500 to 3000°F – for this 
idealized and worst case condition. In a 2-D transient structural thermal analysis the temperatures 
are expected to be slightly lower due to conduction of heat into the structure of the body and the 
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flap. The temperatures provided by the radiation equilibrium temperatures at the surface are a 
maximum. 
 
 
 
 

Inflow from
upstreamOutflow

downstream

Outflow to upper surface if
seal leaks or is permeable

Flap ( δδδδ=20 deg)
Body

Seal (approximated
by rectangular shape
for ease of meshing)

Extent of region modeled kept small to decrease preliminary analysis time  
 

Figure 6   Computational Grid 
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Figure 7   Flow Pathlines 
 
 



NASA/CR—2000-210522   

Impermeable Seal

Pressure (psf) Pressure (psf)

High pressure at
seal surface

Static Pressure Distribution

Flow through permeable seal does not significantly affect pressure at the seal surface

Outflow

Seal surface

Reattachment
point Separation

point
Reattachment
 point

Separation 
point

Permeable Seal (k = 1 x 10-7 ft2)

 
 

Figure 8   Static Pressure Distribution 
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Figure 9   Total Gas Temperature Distribution 
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High seal permeablility significantly increases seal temperatures
Note: These radiation equilibrium temperatures are only a rough estimate of actual
material temperatures.  A transient structural thermal analysis is required to accurately
predict seal temperatures.

Seal permeablility significantly increases seal heating.

S ea l S urface
C on d ition  (20° flap δ)

Radiation
Equilibrium Heat
Flux (Btu/sq ft-hr)

Radiation
Equilibrium
Temperatures (°F)

Im p erm eab le P erm eab le

7000 to 9000 15000 to 30000

2000 to 2200 2500 to 3000

 
 

Figure 10   Predicted Seal Temperatures 
 
The previous five figures were based on a flap deflection angle of 20°. The maximum radiation 
equilibrium temperatures from CFD analyses of other flap deflection angles were also 
determined for the impermeable seal and are plotted in Figure 11. Temperatures of 2500 to 
3000°F were calculated for a permeable seal at a deflection angle of 20°. Other deflection angles 
for the permeable will be evaluated seal over a range of permeability levels at the beginning of 
the next phase of this work. 
 

Effect of X-38 BodyFlap Deflection on Seal Maximum Radiation Equilibrium Temperature
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Figure 11   Flap Deflection vs. Seal Maximum Radiation Equilibrium Temperature 

The conclusions of the preliminary aerothermal analysis are listed in Figure 12. 
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• Preliminary CFD analysis indicates that handbook cavity correlations slightly 
underpredict the aerothermal environment for deflected flaps. 

• High seal permeability (10-7 ft2) results in increased aero-heating to the seal. Actual 
ceramic fiber seals are expected to be considerably less permeable than that in our 
initial analyses -- resulting in lower temperatures. 

• Maximum seal surface temperatures are expected to be in the neighborhood of 2000 
to 2200°F for a 20-degree flap deflection for an impermeable seal, and higher for the 
high permeability seal. 

• Seal temperatures increase as body flap deflection angle increases. 
 

Figure 12   Conclusions – Aerothermal Analysis 
 
 
 
Arc-Jet Testing -- Test Fixture Mock-Up 
 
Arc-jet testing is a necessary and relevant environment test for seal function. A test fixture was 
designed in cooperation with the arc-jet staff at NASA-Ames Research Center. The NASA-Ames 
20-megawatt Panel Test Facility arc-jet heater was selected for these tests because of: 
 

• Heat flux capability (0.5-75 btu/ft2sec) 
 

• Ability to change the test fixture angle of attack (-4 to +4 degrees) during the run 
 

• Real-time hot-surface video recording and optical pyrometry capabilities 
 

• Ability for mechanical and electrical feedthroughs into the chamber enabling control 
surface actuation during the run 
 

• Ease of installation and removal of the test fixture and components of the test fixture 
 
 
Other facilities have higher possible pressure differentials, which may need to be explored on the 
subelement and element level at specific conditions following satisfactory demonstrations of the 
high temperature actuated seal designs. 
 



NASA/CR—2000-210522 11  

The test article was designed to include the following features: 
 

• Control surface hinge-line seal cavity with replaceable cartridge to quickly and 
easily change-out candidate seals and seal materials 

• Actuated trailing flap to deflect the control surface and assess effects of potential 
flow ingestion into the control surface hinge-line seal cavity 

• Cavity will be well instrumented with probes to measure upstream and downstream 
pressures and temperatures.  

• Test results will be used to validate control surface seal design and aerothermal 
analyses  

 
 
We completed a mock-up of the seals test fixture based on dialog between Boeing, GRC, and 
ARC that incorporated the above features. The mock-up article is shown in figure 13. 
 
The mock-up was evaluated for design applicability and form and function in the NASA-Ames 
Arc-Jet Panel Test Facility (PTF) in cooperation with ARC personnel. Figures 14 through 16 
show the mock-up in the Ames PTF facility. Major issues that were identified during the trials 
were actuation possibilities, thermocouple and pressure sensor locations, and flap angle 
constraints. The changes suggested from the dialog between Boeing and ARC will be 
incorporated in the actual test article. 
 
 
 
 

 
Figure 13   Mock-Up of Arc-Jet Test Fixture for Seals 
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Figure 14   Test Article Mock-Up in NASA-Ames PTF 
 
 
 

 
 

Figure 15   Test Article Mock-Up in NASA-Ames PTF 
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Figure 16   Test Article Mock-Up in NASA-Ames PTF 
 
Planned Continuing Activities: 

 
• Fabricate the Test Fixture 
• Design/Fabricate Seals and TPS Components 
• Complete Thermal/Structural Analysis 

 
 
CONCLUSIONS 
 

• Orbiter application experience for seals only extends to 1600°F. 
 
• Sliding wear information at elevated temperatures for ceramic bulb type seals does not 

exist. 
 
• Small re-entry vehicles will require high temperature capability (2200°F to 2400°F) for 

acceptable performance. 
 
• Preliminary aerothermal analysis indicates that ceramic seals for X-38 applications 

appear to require low permeability. 
 
• Metallic springs (as in currently used designs) may be insufficient for necessary 

resiliency. 
 
• Realistic values for permeability are required for complete analysis. 
 
• A movable test fixture for arc-jet testing of control surface seals has been designed. 
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